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1. Introduction

1.1. General context

1.1.1. Protein universe

Proteins are biological macromolecules that perform many functions in living organisms [1].
They can, for instance, play the role of catalyst as enzyme, or a structural role as cytoskele-

ton. Because they are so major in cells’ life, it is important to understand their functions, which
are linked to their three-dimensional (3D) structures [2]. Hence, it is possible to have a better
understanding of pathological mechanisms at the molecular level and, eventually, to counter
them. The experimental techniques used to get insights into the protein structures and functions
are not always applicable, especially due to the difficulty and duration of these approaches [3, 4]

and the huge number of proteins in the universe [5] (> 10×1010). In this context, bioinformatics
approaches are useful in so far they allow prediction of structural and functional features, based
on homologs detection. Indeed, proteins can be grouped into approximately 20×103 functional
families [6, 7], which share similar 3D structures and sequence similarities, reflecting a common
evolutionary origin.

1.1.2. Remote homology detection

So, as said just before, detecting sequence homology permits to predict function to proteins
from the information of their amino acid (AA) sequences. However, if sequences are

very different, remote homology can be difficult to detect, even when using the most sensitive
tools like PSI-BLAST [8, 9] or HH-BLITS [10]. This is due to the fact that sequences are less
conserved than 3D structures. For instance, as reported in B. ROST’s paper [11], “most pairs of

similar structures have sequence identity as low as expected from randomly related sequences

(from 8 to 9 %)”. More sensitive tools, based on the 3D structure information, are desirable,
in order to increase the detection of remote relationships. This issue is also relevant in the
context of accurate prediction of 3D structures using artificial intelligence approaches such as
AlphaFold2 [12], available for whole proteomes [13], insofar as this type of approach also relies
on multiple sequence alignment (MSA) to predict contacts between residues. So, even if a
substantial gain in predictions has been obtained, there are still some sequences in the “dark”,
corresponding to folded structures, as illustrated by recent works [14–16]. Adding 3D structure
information can be made by considering the secondary structures, which can be predicted from
the AA sequence information. However, accurate secondary structures prediction also generally
relates to MSA [17]. Yet, an approach is developed in the internship lab and detailed below that
allows this information on secondary structure to be considered from the information in a single
AA sequence, without the need of homologues.
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Fig. 1: HCA principle. Star = proline; black diamond = glycine; square = threonine; square with a dot = serine.
An AA sequence (top text line) is translated into a binary code (third text line; with 1 being one of this strong
hydrophobics AA: V, I, L, F, M, Y, W). Those can also be translated into a integer called Peitsch code (last text
line). Then, an HCA diagram can be drawn, on which HC are directly linked to the RSS observed on the 3D
structures, on the right (PDB accession code 3GT7, partial structure).

1.2. HCA

1.2.1. Principle

The hydrophobic cluster analysis (HCA) is a two-dimensional approach, based on the repre-
sentation of the protein sequence on an alpha-helical net [18]. Its main principle is shown

on [fig. 1]. On this net, one can highlight clusters of strong hydrophobic AA (V, I, L, F, M,
Y, W), which mainly corresponds to regular secondary structure (RSS) [18]. A dictionary of
hydrophobic clusters (HC) present in protein globular domains has been established [19, 20],
with some HC species (defined by a unique binary code) displaying marked propensities for
the alpha-helices or beta-strands. As exemplified in A. LAMIABLE et al. [20] and illustrated
on [fig. 2], these HC are more conserved than the AA sequence and permit to detect structural
similarities, even at very low sequence identity [21]. This means that HC could be used as a
discriminant feature (structural signature) to detect remote homology.

1.2.2. Previous works and limitations

In two previous internships, V. LEDUC [22] and N. FRANCILLONNE [23], have both tempted
to build HC substitution matrices, with the aim of using such matrices instead of classical

AA matrices like BLOSUM62 in similarity searches, and thereby increase the sensitivity. Also,
they successfully highlighted substitution patterns between HC. This means that it could be
possible to develop algorithms, based on these substitution matrices, to find similar proteins in
terms of HC content, and so, in terms of 3D structure. Even if their work led to encouraging
results, the matrices have the major limitation to be based on MSA of related sequences. As
a matter of fact, using MSA have the problems to limit the search for substitution patterns at
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a sequence scale. And yet, the objectives are to be able to detect remote homology also at the
superfamily, fold or even at an architecture level. So, a main objective of this internship is to
test the possibility of constructing such a matrix without considering MSA. For this, it has been
decided to use the fast-growing methods of natural language processing (NLP). More precisely,
Word2Vec (W2V) is going to be used in order to extract subtleties on HC sequences.
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Fig. 2: Sequence versus HC conservation. Top = Sequence alignment of 1DJM and 3GT7, which are 3D
structures experimentally solved. There is a low identity percentage between the two sequence (identity < 21 %);
bottom-left = HCA diagrams of the two corresponding sequences. In this figure are highlighted the HC, with the
conserved hydrophobic AA colored between; bottom-right = tridimensional structure (yellow = 1DJM; blue =
3GT7) alignment, done with iPBA [24–26].

1.3. NLP and W2V

1.3.1. Principle

The tool W2V [27] is a single-layer neural network that takes as input a corpus of words and
gives as output numerical vectors. In other words, it permits to go from a text information

to a vectorial space. These W2V vectors have multiples properties. The first major one is that
when two words are close, thus are synonyms, the corresponding vectors are close to each other.
This means that, by computing cosine similarities, values close to 1 are obtained for synonyms.
In contrast, antonyms words give values close to -1. The second major property is that simple
arithmetic operations are doable between vectors to obtain other ones. The most classic and
known example is

−−→
king + −−−−→woman – −−→man = −−−→queen [28]. Note that W2V can be used in deep
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learning method, like to operate classification [29], and that there is other tool to achieve this
goal, like GloVe [30], that treat the context in another way.

1.3.2. Vectors norm meaning and W2C application on biological context

1

2
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4

5

6

1 10 100 10³ 10⁴ 10⁵ 10⁶
Words occurrence

V
ec

to
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or

m

Fig. 3: Vectors norm as a function of the occurrence of the words. Y-axis = logarithm to base 10. This figure
is extracted from the paper by A. M. J. SCHAKEL and B. J. WILSON [31]. Some modifications were done to
this plot (axis names, colors, font and general layout).

First, A. M. J. SCHAKEL and B. J. WILSON [31] have shown that the vectors’ norms are
important to understand which words are significative or not during the learning. It is due

to a problem in NLP of treating linking words with poor meaning [27]. So there is a necessity
to decrease the weight of those kinds of words during the learning. Thus, it seemed worthwhile
to study this norm, specifically in order to evaluated if W2V is applicable to a HC corpus and
compare the obtained results. This is done especially in order to understand which HC words
are important and are worth to be kept.

Furthermore, other studies have also applied W2V to biological corpus. This is for instance
the case of MILLER et al. [32] who considered genes functions as a language, gene identi-
fiers as words and annotated contigs as sentences. They used the resulting vectors to make a
UMAP [33], a non-linear dimension reduction method for clustering data, to assign genes func-
tions. Moreover, another study of BILESCHI et al. [34] used protein sequences as a language,
defining AA as words and sequences as sentences. With the resulting vectors, they built a
substitution matrix which shared multiple characteristics with the BLOSUM62 [35] one. This
indicates that W2V seems to be an appropriate tool for highlighting fundamental features of
protein structures.
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1.4. Objectives

In this report, the question is to know whether the W2V tool could be used in a biological
context, in which the text corpus is made up of HC, to produce in fine a cosine similarity matrix
that may inform of their substitution patterns. HC indeed are words in a protein sequence text,
which have a structural significance since they mainly correspond to RSS of folded domains.

In order to answer that, sequences of 3D structures experimentally resolved are considered, as
reported in the structural classification of proteins extended (SCOPe) database [36–38]. These
sequences are translated into HC (words) and then used as a corpus for the training dataset. The
SCOPe database provides access to a hierarchical classification of 3D structures to select only
the soluble domains, and to analyse results according to structural classes. Several redundancy
level (RL) of sequences, defined by the maximum identity between pairs of sequences, are con-
sidered in the SCOPe database to analyse the impact of redundancy on the parameters studied.
Indeed, it is recommended to work with large databases as the quality of the word vectors gen-
erated by W2V increases with the amount of training data, although high RL can also introduce
a bias in results.

First, it is important to assess if the contexts, in which HC are embedded, are conserved. As
a matter of fact, it is on this conservation that the possibility of highlighting HC synonyms
through vector representation depends, which could be used to establish HC substitution ma-
trices without resorting to MSA. An assumption is that the developed context metric should
allow the measurement of conserved context, because a conserved context should lead to the
learning of substitution patterns. Another one is that there will be a link between the context
and the norms, as far as W2V learning is based on this context. Then, after learning the vector
representation of HC, their overall significances are measured by analysing their norms, as done
in the work of A. M. J. SCHAKEL and B. J. WILSON. These investigations should lead to the
selection of a set of informative HC, on which a cosine distance matrix could be established in
order to appreciate HC substitution patterns. The hypothesis is that HC with the more “struc-
tural signification”, so with an intermediates size, will be kept. These results will also permit
the selection of a database with a specific RL. The assumption here is that the higher RL should
permits to have better results, as far as in NLP used corpus are generally very big (for instance,
up to 783 × 106 words in T. MIKOLOV et al.’s paper [27]).
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2. Material and methods

FIERLENIUS

Python

SCOPe 2.08

Database already
treated by pyHCA

13 147 201
501 901 75
103 54 5 201 79
45 7951 156165

Corpus of Peitsch
code sequences

Vector
embedding

Cosine
similarity

matrix

147 13 3011

Measuring the
context diversity

Plotting results
(correlation, distribution, …)

ASTRAL
RL treated

cd-hit
treatment

W2V

HC occurence Vectors
norm

||V||₂

Fig. 4: Workflow used to produced all results. All the script are available on GitHub. After the data have
been produced, they are analysed by doing plots presented in the result section. The “database already treated by
pyHCA” correspond to the 30# RL database.

The general protocol followed in this study is shown in [fig. 4]. All implementation have
been done in python 3.10.8 [39]. Numpy 1.23.5 [40] is used for vectorization and

to compute vectors norm. Plotly 5.9.0 [41] and Matplotlib 3.6.2 [42] are used for plotting.
igviz 0.5.1 is used to plot network (figure not shown here), available at https://github.com/A
shton-Sidhu/plotly-graph/. Pearson correlation and linear regression are computed using SciPy
1.8.1 [43]. All the scripts used for the realization of this manuscript are available on GitHub
at https://github.com/FilouPlains/FIERLENIUS.

2.1. Protein database

2.1.1. SCOPe database

SCOPe [36–38] is a database providing a hierarchical classification of proteins domains of
known 3D structures, solved experimentally. Those domains are organized following next

characteristics: fold, superfamilies, families, species. The version 2.08 was used. Only the
first four classes are taken in consideration (a: all alpha proteins; b: all beta proteins; c: alpha
and beta proteins [a/b]; d: alpha and beta proteins [a+b]), leading to 4,472 domains in the
dataset, and corresponding to soluble globular domains.
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2.1.2. Redundancy sequence treatment

Originally, the considered dataset used in A. BRULEY et al.’s work [15] has a RL of 30 %.
This dataset (noted as 30#) was obtained from the Astral SCOPe database, considered

at a 30 % of RL, and treated by pyHCA [15]. This software defined foldable domains from
the SCOPe domains, and associated HC. As such, this database only contains HC features,
without directly providing information of the AA content of the whole sequences ([tab. 1]).
Moreover, by testing the identity percentage between sequences, it appears that a few sequences
shared 100 % identity over a short segment, representing only a part of the total length of the
compared sequences. Such 100 % overlap was present in the dataset extracted from Astral
SCOPe at https://scop.berkeley.edu/astral/subsets/ver=2.08.

So, in order to avoid a possible bias in the analysis and consider different RL, the SCOPe
database was downloaded from https://scop.berkeley.edu/astral/subsets/ver=2.08, with three
defined RL (30 %, 70 %, and 90 % identity). In addition, to avoid the sequences which still
shared 100 % of identity, cd-hit 4.8.1-2019-0228 [44] was used to treat the databases.
Their characteristics after those treatments are given in [tab. 1].

Tab. 1: Database characteristcs after redundancy treatment. # = database untreated by cd-hit; #AA =
number of AA; #Seq. = number of sequences; X = data unavailable.

30# RL 30 RL 70 RL 90 RL

Class #Seq. #AA #Seq. #AA #Seq. #AA #Seq. #AA
All 10,847 X 9,893 1,804,475 22,534 4,308,638 28,650 5,385,957
a 2,497 X 2,081 316,000 3,942 630,557 4,706 748,199
b 2,497 X 2,225 342,617 5,157 787,397 8,338 1,282,403
c 2,834 X 2,926 727,783 7,773 1,964,118 8,891 2,251,869
d 3,019 X 2,661 418,075 5,662 926,566 6,715 1,103,486

2.2. HCA

To translate a sequence of AA into a sequence of HC, everything was made according to
A. LAMIABLE et al.’s paper [20]. To begin with, a sequence is translated into HC by

“binarizing” into a series of 1 and 0; with 1 being one of the next strong hydrophobic AA: V,
I, L, F, M, Y or W. After this, HC are delimited by following the next rule:

1. HC are delimited by two 1, which mean that the smaller possible one is 11.

2. Two HC are separated with at least four 0 or one proline (P).

To finish, HC are translated into a unique integer code that describe it, called Peitsch code.
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To obtain it, by considering that a HC is a vector (like 1011 being [1, 0, 1, 1]), the
following formula is used:

Peitsch code =
length(HC)∑

i=1

(
HClength(HC)–i × 2(i–1)

)
So, for instance, the HC 1100001 gives, by following the upper formula, the Peitsch code
97. Note that, in addition to all what have been said, the cluster 11 is not taken in consider-
ation. This is due to the fact that this very frequent HC species is not associated with marked
propensities for RSS and most often observed in coils [19, 20].

2.3. Word embedding

For the word embeddings generation, W2V 2018 [27] from Gensim 4.2.0 is used. The
parameters used for this module/software are given in the [tab. 2].

Tab. 2: Used parameters for launching W2V model.

window epochs size mintf sample
10 20 300 2 10-3

Words number ta-
ken in considera-
tion for the context
prediction.

Number of learn-
ing iteration to per-
formed.

Size of the embed-
ding vector.

Minimal word oc-
currence. If a word
has a lower oc-
currence, it is not
taken in considera-
tion.

Down sampling of
the words that are
too frequent.

Note that for the downsampling, the probability to discard a word is:

p(wordi) =

√
fwordi

corpus size × down sampling
+ 1

× corpus size × down sampling
fwordi

To use this tool, a corpus with defined sentences and words has to be given in input. A corpus
is here a set of sequences from the SCOPe database (with different RL). A sentence is here a
sequence translated into HC, more precisely, into Peitsch codes. A word is here a Peitsch code.
Then, numerical vectors are obtained as outputs. When forming the corpus, it is possible to
extract other information like the distinct Peitsch codes and their occurrences. Note that for
the learning method, the parameter “unigram” is kept to default (n-gram was not used), which
mean that words are taken one by one in consideration to predict the output, instead of n by n in
the case of n-gram. Note that the skip-gram option is also kept to default, which is the way of
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W2V to learn the context (take a one-hot encoded vector for a central HC, as input, and output
predicted numerical vectors for the other surrounding HC –or the context–).

2.4. Implemented metrics

2.4.1. Context analysis

Because w2v is based on the context into a window of fixed size, it is necessarily to have
a metric to measure the context diversity. To that aim, two methods are used. In NLP,

words order can change while having the same meaning. For instance, “The doc eat the food”
and “the food is eaten by the dog” mean the same, while having words in a different order.
The metric linked to this type of context is called unordered context diversity (UCD). But in
this biological cases, order have an important meaning, as far as AA sequences with a different
order could give different proteins with potential different functions, and this should be the same
with HC. The metric linked to this type of context is called ordered context diversity (OCD).
So, for the UCD, the Bray-Curtis distance [45] is used:

UCD = 1 –

n ×

∣∣∣∣∣
n⋂

i=0
Si

∣∣∣∣∣
n∑

i=0
|Si|

Where Si is a set and n the number of sets. Here, a set is all wHC surrounding a given one, with
w being the window size (if w = 10, then 10 HC are taken at the left and 10 more at the right of
the given HC). But, using this formula for all possible sets is too strict and almost always give
maximum UCD values of 1.0. To compensate that, the UCD are computed between all pair of
set, then all obtained paired-values are averaged.

The second one is an implementation from an algorithm from S. WU et al.’s paper [46], which
is qualified as O(NP) algorithm. This metric is used to analyse the OCD. Note that a relative
version is used (in other words, the result is divided by the sum of the length of both com-
pared sequences). As UCD, all OCD are computed by pairs, then all obtained paired-values are
averaged.

2.4.2. Cosine similarity matrix

A cosine similarly matrix is a symmetrical matrix of size n2, with n the number of distinct
words. To compute the cosine similarity matrix, for each cell of the matrix, the next

formula is applied [47]:

9



Mi, j =
−→vi · −→vj

∥−→vi∥2 ×
∥∥−→vj

∥∥
2

With −→v a vector output by W2V, and M the matrix to fill. Obtained values are included from -1
to 1.

3. Results and discussion

For all results, the SCOPe a, b, c, d classes have been considered, at three RL (30 %, 70 % and
90 %). Also, for a first time, a database previously used by A. BRULEY et al. [15] (designated
next by 30 RL#) at a 30 RL from Astral is also considered. However, it was realized afterwards
that it contained sequences which shared 100 % of identity, over a short length of sequences.
These introduced bias in vectors norm analysis. Yet, this dataset was kept as a reference.

3.1. Characteristics of HC in the datasets

3.1.1. Relationship between the HC size and their occurrence
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R² = 0.78 ; y = -0.97x + 4.47
30 RL ; ***
R² = 0.74 ; y = -0.92x + 4.41
70 RL ; ***
R² = 0.74 ; y = -0.93x + 4.78
90 RL ; ***
R² = 0.73 ; y = -0.91x + 4.83

Fig. 5: Log10 of Peitsch codes as a function of the log10 of their occurrence. # = dataset untreated by cd-
hit; *** = highly significant p-value, < 0.01, obtained with a two-sided test of the slope of the regression line.
Equation, R2 and p-values are obtained using a linear least-squares regression method from SciPy.

First, the relationship between the size of the HC, appreciated through their Peitsch code,
and their occurrence is studied. As shown on [fig. 5], the log10 of the Peitsch codes is

correlated to the log10 of their occurrences, for all RL, as indicates by strong R2 (> 0,7) and
highly significant p-values. This means that the more an HC is long, the less it occurs in the
dataset. Also, a shift of the regression lines, obtained for the different RL, is observable. It
follows the log10(occurrence) axis, but not the other one. This shows that, as a function of
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the RL, the occurrence of HC is modified, with more HC at higher RL. Yet, the relationship
between the HC size and their occurrence is still the same. In particular, no clear increase of
occurrence of some particular HC can be observed at the highest RL, which could indicate the
existence of very similar sequences. The consideration of high RL for analysing HC properties
has already been supported by a previous study done by R. EUDES et al. [19], highlighting the
stability of their properties (secondary structure preferences, AA composition) relative to RL.

3.1.2. Informative HC species
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Fig. 6: HC species occurrences and HC occurrences. A = Distribution of HC species, PERCENTAGE =
HCspecies count≥30
all HC species count ×100; B = Distribution of HC occurences, PERCENTAGE = HCoccurences count≥30

all HCoccurences count ×100;
# = dataset untreated by cd-hit; occ. = occurrence. Legend is for both plot.

Next, two things are evaluated. The first one is how much HC species, each species corre-
sponding to a unique Peitsch code, do contain at least 30 HC occurrences. The second

one is what proportion of total HC occurrence present in these species, with at least 30 HC.
This threshold of 30 HC was considered in the previous works of R. EUDES et al. [19] and A.
LAMIABLE et al. [20], to allow a statistical analysis of the HC properties. In [fig. 6: A], only
the HC species present in all RL databases are counted, while in [fig. 6: B], the total occurrences
are counted for each cluster species in all RL databases.

For all RL, the proportion of HC species with at least 30 members is similar (from 12 to 13 % in
[fig. 6: A]), as it is approximately also the case for the proportion of the HC occurrence (from
83 to 88 % in [fig. 6: B]). When the RL increased, not only the total number of HC increased,
but also the number of HC species for which there is a significant number of occurrences.
This means that a with higher RL, the diversity of HC increased at the same time as the HC
occurrence. Interestingly, those informative HC species, although relatively few in terms of
total occurrence (from 12 to 13 %) represent the bulk of the HC occurrence (from 83 to 88 %)
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in the corpus studied. One can note that the 30 RL# database has less HC than the 30 RL. This
is due to the 30 RL# being processed by the pyHCA software [16]. This software cut domains
in foldable segment, leading to have less HC than the 30 RL remade database.

By combining all this information, the database that looks like to be the better for the training
should be the one with the biggest RL. Simply because there are more data. Yet, in order to
validate the database choice, other parameters must be checked.

3.1.3. Correlation of the HC occurrences between databases with different RL
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Fig. 7: Comparison of the log10(occurence) for the differents dataset using a heatmap and scatter plots. Plot
background = R2 value between two paired dataset; color bar = R2 value scale; ⊛ = highly significant p-value, <
0.01; # = treated dataset; diagonal = box and violin plot of the log10 of the occurrence by RL; one point = one HC.
The number in parenthesis indicates the database RL. A Pearson correlation test have been done using SciPy,
between each paired of this matrix. For the diagonal, distribution of the log10(occurence) is shown. Only HC in
common between all database are kept.
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Next, the correlation of the occurrences of the HC between all considered databases is as-
sessed. Also, potential outliers through scatter plots are checked. Here, there are only

high correlations (R2 around 1) with highly significant p-values. Also, no “significant” outliers
are observed. This means that, independently of the RL, HC keep the same behaviour in terms
of occurrences. Noteworthy is the break on the line for low log10(occurence), when comparing
low RL with high one. This reflects the gain in information for infrequent clusters (large clus-
ters). This is in line with previous observation done by R. EUDES et al. [19], when they showed
a clear increase of information as cluster length increases.

3.1.4. Conclusion about occurrences and database RL

The first three figures of this results section showed important information about HC and
HC species occurrences. First, increasing RL led to increase the number of HC into the

dataset, both in terms of the number of informative HC species (n ≥ 30) and of the global
occurrences, without apparently introducing any bias due to an over-representation of some HC
at high RL. The most frequent HC species (n ≥ 30) moreover cover a large part (> 80 %) of the
HC dataset, thus contributing to a large part of the corpus studied. Also, the HC occurrence is
inversely correlated to their size, with an increase of information for the large cluster with the
RL. All of these observations tend to conclude that a database with a high RL could be better,
when the occurrence is the only parameter taken in consideration.

3.2. Analyses of the context diversity

3.2.1. OCD versus UCD

Context analysis is a central element of NLP approaches. While the order of words in natural
language may be undifferentiated, the same may not be true for HC, the basic elements

of 3D structures, as proteins are synthesized from the N- to the C-terminus and folds according
to specific topologies. So here the correlation between conservation of an unordered context,
generally considered in NLP approaches, with that of an ordered context, reflecting a priori

the situation under study, is tested. Contexts were calculated according to the methodology
presented in the materials and methods section [2.4.1.], considering unigram and window sizes
of 10 HC. So, there is 10 HC at left and 10 more at right of a considered HC.

Context conservation is inversely linked to the context diversity, which is presented in [fig. 8] for
ordered and unordered contexts, for the four databases with different RL. The SCOPe databases
were considered as a whole or with the different classes considered separately. Then, a linear
Pearson coefficient is computed between OCD and UCD, for a same SCOPe level and a same
database.
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Fig. 8: Comparison of UCD and OCD for the different datasets and SCOPe levels using a heatmap and
scatter plots. Color bar = R2 values; ⊛ = highly significant p-value, < 0.01; plot background = R2 value between
two paired dataset; line = a specific SCOPe level; column = a database with a specific RL; one point = one HC.
These correlations are computed for the different SCOPe level. A Pearson correlation test have been done using
SciPy, between each paired of this matrix. Only HC in common between all database are kept.

First, all tested correlations are very high (around at least 0.9) and highly significant. Also,
there are no very outlying values (only one for SCOPe b, 70 % RL database). This means that,
firstly, the UCD metric is, in this biological context, correlated to the ordered one, even though
diversity values are generally a little higher for the ordered context than for the unordered one
(shift of the HC cloud under the diagonal). This means that if W2V is based on the UCD, this
tool can still be used as far as these two are correlated. Second, it is not possible to determine,
through those results, classes of HC that have bad correlation, which could be discarded from
the dataset for the calculation of cosine matrix. The [fig. 8] also indicates that the context
conservation logically increases (thus diversity decreases), for some HC, with the increase of
the RL, but also when taking in consideration one specific SCOPe level. This suggests that
higher RL are more appropriate for NLP-based context analysis.
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3.2.2. Impact of the SCOPe classes and RL on the OCD, in regard to HC occurence
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Fig. 9: OCD as a function of the log10 of the occurrence. A = SCOPe level a; B = SCOPe level b; C = SCOPe
level c; D = SCOPe level d; E = SCOPe level a to d; # = dataset untreated by cd-hit. Only floating average is
shown here due to the high numbers of points to render, making the chart unreadable.

Next, the context diversity is analysed as a function of HC occurrence, which is directly
correlated to HC size. In [fig. 9], context is extracted from the sequences, as in [fig. 8].

In order to take into consideration the SCOPe class levels, only sequences from a given class
are taken in consideration (for instance, sequence from “SCOPe class a” only with a given HC
are used to compute the OCD for the plot [fig. 9: A]).
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When taking in consideration all SCOPe level ([fig. 9: E]), all HC having a log10(occurrence)
from 1.0 to 3.5 have a context diversity around 90 %. Below 1.0, context diversity is much
variable due to the fact that less frequent HC have a higher probability to share a conserved
context (so low diversity). Now distinguishing between the different SCOPe classes ([fig. 9:
A-D]), one can note that for the SCOPe class b (all beta), HC has a context diversity much
lower than other level. In contrast, the SCOPe a (all alpha) has, on average, higher OCD values,
while SCOPe class c and d ([a/b] and [a+b]) behave in-between. This can be interpreted that
there are higher constraints linked to beta-strand assembly than to alpha-helix, consistent with
literature data [48, 49]. Finally, high RL has especially an impact on less frequent HC and on
SCOPe level b which has a lower OCD than other database ([fig. 9: E]). It is seeable that on
average, for all the HC occurrences, the HC diversity is lower for the 90 RL database than for
the other databases, indicating that increasing the RL from 70 to 90 leads to a decrease of the
diversity by introducing more similar sequences.

In conclusion, the context diversity is logically influenced by taking specific SCOPe class in
consideration. Again, the 90 RL database should be appropriate for NLP, by presenting a global
OCD lower (thus a context conservation greater) than the other RL databases.

3.2.3. Conclusion about the HC context diversity metrics

Foremost, it has been seen that even if W2V is based on UCD, its use can nevertheless be en-
visaged in an ordered context such as the sequences of globular domains of proteins, given that
both ordered and unordered metrics are correlated. Then, it has been shown that the diversity in
an ordered context, as present in protein sequences, can be influenced by refining the analysis
and considering the SCOPe classes separately, indicating that this metrics can extract a biolog-
ical meaning (beta-strand have a better conserved context than other secondary structure). Yet,
by taking in consideration the issue of redundancy, it may be advisable to use the 90 RL bank
as a training set, as this contains more information about context conservation. However, these
conclusions are only valid for the conditions tested (window of length 10, unigram), and these
parameters should be varied in future studies.

3.3. Analyses of the norm of the vectors produced by W2V

3.3.1. Vectors norm meaning and its link to the HC occurrence

While the direction of the vectors produced by W2V has been shown to contain semantic
information [27, 50], A. M. J. SCHAKEL and B. J. WILSON’s work in 2015 has shown that vec-
tors norm can be used as a measure of the word significance in a corpus. Therefore, the norms,
computed by giving to W2V a corpus containing sequences as sentences and HC as words, are
studied. This tool gave numerical vectors, which can be manipulated to obtain norms.
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Fig. 10: Vectors norm as a function of the log10 of the occurence, for different dataset. Grey area = Peitsch
code with low meaning; white area = Peitsch code with high meaning; A = 30# RL dataset untreated by cd-hit;
B = treated 30 RL database; C = treated 70 RL database; D = treated 90 RL database; one point = one HC. Note
that the grey/white area are given for information purposes only.

Foremost, according to A. M. J. SCHAKEL and B. J. WILSON’s observations, low occurrences
led to low norms due to W2V --downsampling parameters. Words that are overrepresented
are randomly deleted to emphasize the learning on more significant words. These overrepre-
sented words correspond here to short HC, as seen in the previous section, and correspond to
small norms on [fig. 10]. Words that are not frequently encountered are badly learnt by W2V.
They correspond here to long HC, as also seen in the previous section, and correspond to small
norms on [fig. 10]. Therefore, it can be concluded that the vectors norm pic corresponds to HC
of an “intermediate size”. This is very interesting, due to the fact that too long and too short HC
are not good structural descriptors. Indeed, long HC are generally made of severalRSS, while
short ones are found in a wide variety of contexts and do not show marked tendencies towards
a particular type of secondary structure [19, 20]. Furthermore, another interesting observation is
that the more the RL increases, the more the vectors norms pic increases. This means that with
a database with a higher RL, the obtained vectors are more descriptive, thus leading us to select
the 90 RL database as a training set.
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3.3.2. Correlation between HC norms at different RL

1
2
3
4
5

Ve
ct

or
s n

or
m

(3
0 

R
L

#
)

1
2
3
4
5

Ve
ct

or
s n

or
m

(3
0 

R
L

)

1
2
3
4
5

Ve
ct

or
s n

or
m

(7
0 

R
L

)

1 2 3 4 5
Vectors norm

(30 RL#)

1
2
3
4
5

Ve
ct

or
s n

or
m

(9
0 

R
L

)

1 2 3 4 5
Vectors norm

(30 RL)

1 2 3 4 5
Vectors norm

(70 RL)

1 2 3 4 5
Vectors norm

(90 RL)

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 11: Comparison of obtained vectors norm for the different dataset using a heatmap and scatter plots.
Plot background = R2 value between two paired dataset; color bar = R2 value scale; ⊛ = highly significant p-
value, < 0.01; # = treated dataset; one point = one HC. A Pearson correlation test have been done using SciPy,
between each paired of this matrix. For the diagonal, distribution of the norm is shown. Only HC in common
between all database are kept.

The [fig. 11] shows the comparison between all HC vectors norms computed for the different
RL databases. The scatter plots are shown to identify potential outliers. There are only

medium to high correlations (R² from 0.6 to 0.9) with highly significant p-values. Also, no
significant outliers are observed. This means that, independently of the RL, HC keep the same
behaviour in terms of vectors norms. The major difference is how the scatters plots are spread,
as far as the maximal vectors norms values are dependent on the RL of the chosen database.
In conclusion, because the vector norms appear well correlated, it would again be tempting to
select the 90 RL database as a training set, at least in the context of the single set of parameters
tested.
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3.3.3. Conclusion about the vectors norms

The higher the RL of the database is, the higher are the HC vector norms, indicating a global
higher significance of HC words. Moreover, what is observed in classical NLP, as documented
in A. M. J. SCHAKEL and B. J. WILSON’s article in 2015, appear to be transferable to this
biological context, and makes sense with the HC structural behaviour in relation with their sizes.

3.4. Links between OCD and the vectors norm
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Fig. 12: Vectors norm as a function of the ordered context diversity. A = 30# RL database dataset untreated
by cd-hit; B = treated 30 RL database; C = treated 70 RL database; D = treated 90 RL database; one point = one
HC.

To evaluate whether the HC vectors norms are correlated to the OCD (thus inversely corre-
lated to OCD), [fig. 12] is built. One major problem with this representation is linked to

what has been explained before: Not all norms values are “significant” to be analysed, because
some HC are down sampled and some are “not learnt” due to their low occurrence. Moreover,
there is no existing threshold to choose optimal sets of HC with good norms values, to then
compute a correlation between those values and the OCD. So, to counter this, a progressive
threshold is used (no plots shown here):

1. A progressive vectors norm threshold is defined, going from 1 to 7.
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2. For each threshold tested, a set of HC is selected. Those are selected only if their vector
norm value is greater or equal than the current tested threshold.

3. For each set of HC that have been selected, a Pearson correlation coefficient is computed
between their vectors norm and their OCD values, using SciPy.

4. When the p-value are at least inferior to 0.1, the R2 greater or equal than 0.5, and there is
a sufficient number of HC that have been kept, the threshold is kept.

With this approach, no correlation has been detected (only with at the most 10 points, which
is not significant enough). In other words, the HC vectors norms are not, whatever threshold
tested, correlated to the OCD. This could be explained in two ways: First, W2V is not able to
learn HC context appropriately; second, the context diversity metrics used here are too strict.

3.5. Towards a cosine similarity matrix
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Fig. 13: Cosine similarity matrix using the 90 RL database. Color bar = cosine similarity. Note that not all
Peitsch code are noted on axis, due to space limitations. Note also that the shown matrix is truncated too, due to
size limitation.

A first cosine similarity matrix on [fig. 13] was built, according to the formula described in
the material and methods and applied for each cell of the matrix, using as a reference the

90 RL SCOPe database. As far as, all previous observations tend to show that this one is the
more appropriate (more data, higher vectors norm. . . ).

First of all, the observed diagonal of the matrix is 1.0, meaning that the computed cosine simi-
larity matrix is correct (as far as computing a cosine similarity between the same vector always
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give 1.0). Nevertheless, the rest of the matrix is quite particular: all cosine similarity values for
Peitsch code > 31 are inferior to 0.3. However, even if substitution patterns do not appear as
clearly as those previously observed in matrices established from multiple alignments of related
sequences [22, 23], a few observations can be made:

1. In agreement with previous observations [22, 23], higher positive values (orange/pink, > 0.5)
appear in the upper left corner of the matrix, testifying to substitution patterns adopted by
short clusters (length ≤ 5, 31 of Peitch max code), mostly associated with beta strands.

2. Higher values are also observed at vertical (far left) and horizontal (far top) bands, tes-
tifying to substitutions where one of the clusters is extended to the left or right of the
reference cluster.

3. Outside these regions, a few pairs with higher values can be observed. The most marked
cosine value corresponds to the pair 105 – 165, as seen on [fig. 13]. These 165 (length
8) and 105 (length 7) HC can be aligned with 100 % conservation of hydrophobic AA
(no substitution of 1 by 0), their substitution resulting from N-ter and C-ter extension, as
shown on [fig. 14]. This type of substitution is clearly observed in matrices deduced from
MSA [22, 23] ([appendix I]).

Peitsch code 105 (beta strand): 1101001

Peitsch code 165 (beta strand): 10100101
Fig. 14: Alignment of the Peitsch code 105 and 165. Yellow bold = conserved hydrophobic AA between both
HC.

In conclusion, these preliminary results support the relevance of the developed approach, using
W2V applied to HC words, in highlighting substitution patterns, even if substantial improve-
ment has to be made, especially by considering W2V parameters and learning datasets.

4. Conclusions and perspectives

4.1. Conclusions

During this internship, the W2V tool was evaluated whether it could be used in a particular
biological context, related to the 3D structural behaviour of folded proteins. W2V is a

NLP-related tool, enabling words to be converted into a vector space. In this space, words that
are similar have vectors that are close to each other, and simple arithmetic operations can be
performed. Here, the aim was to use a corpus of protein domains from the SCOPe database, cor-
responding to soluble globular domains, and grouped according to their structure and sequence
similarities. These domains are characterized by the presence of RSS (alpha-helices and beta
strands) folded around a hydrophobic core according to different topologies. The sequences
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in this database can be translated into HC, which include strong hydrophobic AA and the vast
majority of which match the RSS. As these “structural word” are much conserved than the AA
sequences, the aim was here to see if it is possible to extract patterns of substitutions between
these HC trough a cosine similarity matrix. This matrix corresponds to the scalar products of
the vectors, normalized by their norms, and defined by W2V.

Different RL of the SCOPe-derived database were tested, leading to select a high RL, the 90 %
one. This database is enriched in terms of both HC species (each species corresponding to a
unique binary pattern) and HC occurrences. In addition, this database allowed the obtaining of
the lowest OCD values (in other words, the highest context conservation, and the highest vector
norms. Higher norms are related to more descriptive vectors and therefore to a better learning
potentiality of W2V. In addition, analysis of the vector norms allowed to highlight a subset of
more informative HC (those with higher norms), consistent with the general marked propensi-
ties of those HC for RSS [20]. However, two first limitations of this tudy can be pointed out.
First, the OCD metric was not effective. In fact, it was not possible to highlight a link between
this value dans the vectors norm. However, it was still able to highlight some specific features
linked to the SCOPe classification and the RL of the databases tested, by observing smaller
OCD values. Finally, analysis of a first cosine similarity matrix highlighted some favoured
substitutions between HC, consistent with previous matrices built using sequence alignments
of related sequences. These preliminary results thus support the relevance of the developed
approach, using W2V applied to HC words, in highlighting substitution patterns, even if sub-
stantial improvement has to be made. It is necessary to optimize or change various parameters,
especially as only a few of them have been tested

So, to sump up, the most suitable database is the one with a RL of 90 %. Then, the OCD metric
was not perfectly suited to the hypotheses posed, even if it has already enabled to grasp some
subtleties linked to the SCOPe classification and the RL. Finally, the matrix obtained still needs
to be optimized. However, the obtained results remain encouraging for applying NLP methods
to this biological context related to 3D structures by managing to recover some logic of this
domain as better context conservation in the SCOPe b class, corresponding only to beta strands.

4.2. Perspectives

4.2.1. Context diversity metric

The first step is to rework the context conservation metric. It does not take into account
the --downsampling parameter, considered by W2V. This one randomly removes the

most frequent words. However, when the context is calculated, a fixed size window is used
without deleting words. As a result, the context is calculated on words that W2V has probably
not used for its training. In addition, this metric is too strict, as it does not take into account
nearby words. For instance, if the contexts 147 45 and 147 47, with 45 having a cosine
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of 1 with 47; then when the OCD is computed, it will give a value of 100 %, meaning that
this context is not conserved. However, since these two HC are very similar, it would be much
more interesting to consider an OCD value closer to 0 %, thus a conserved context, due to the
similarities of these clusters. These parameters will therefore have to be added to the program
already developed.

4.2.2. W2V parameters

The next step is to optimize the W2V parameters used during training. The parameters used
are either random (like the --downsampling) or based in other articles [31] (like the

--epochs). For this, several options are available, such as random test or the use of genetic
algorithms. However, the major problem that needs to be resoled is the selection of parameters
to validate the model produced. These should be intrinsic validations models (direct evaluation
of the model produced by W2V) and extrinsic validation models (using another neural network
to predict for instance class, and then validate this last model). For the moment, however,
only loss minimization (a function that evaluates the difference between predictions and actual
values) can be used in this context, which is an intrinsic evaluation method.

4.2.3. Database extension

Finally, a third perspective is to extend the database. For example, it is possible to use
the non-redundant protein database [51] (constituted of 2,695,523) to form a much larger

corpus, since in NLP, the corpus traditionally used can reach sizes of up to 196×106 words [27].
The work might therefore be carried out on AA sequences, independently of the knowledge of
their 3D structures. However, it will not be possible, without further processing, to focus on
folded domains, as protein sequences also include disordered regions. In order to focus on these
foldable domains, it should be possible to use the pyHCA software. This software, described in
the paper by A. BRULEY et al. [15], allows from the only information of single AA sequences,
to sort foldable domains according to their structural characteristics (soluble, transmembrane
domains, mainly disordered).
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Appendix

Appendix I: Substitution matrix done in previous internship. Left = matrix done by V. LEDUC [22]; right =
matrix done by N. FRANCILONNE [23].
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INTERNSHIP REPORT

Protein structural signatures as a new language for remote
homology detection in sequence databases

Proteins are biological macromolecules that perform various functions within cells. It is important to know their three-
dimensional structure, which supports these functions. Comparative modelling or prediction tools such as AlphaFold 2
provide access to this structural information in the absence of experimental data, but these tools are based on the search
for sequence homologies. Sequences are much less conserved than structures. This means that there are still proteins
without detectable homologs, whose structure cannot be predicted. In this internship, a new approach to detect distant
homology, based on structural descriptors, defined by hydrophobic cluster analysis, was studied. To this end, Word2Vec
was used to transform a corpus of words (the clusters) into vectors. This corpus is a subset of globular domain sequences
extracted from the SCOPe hierarchical classification database, considered at several levels of redundancy. In the case of
close words (synonyms), characterized by a preserved context, the scalar product of the vectors generated by Word2Vec
gives maximum values. Therefore, two hydrophobic clusters represented by these vectors could be substitutable. The
characteristics of these clusters in terms of the occurrence and norm of their vectors were studied, highlighting, among
other things, the value of banks with a high level of redundancy. In addition, subsets of clusters for which relevant
information can be obtained were also studied. The conservation of the context of hydrophobic clusters varies as a
function of redundancy levels and the SCOPe hierarchy, but is not, under the conditions tested, correlated with the
norm of their vectors. Finally, the first observations of a computed cosine matrix support the relevance of the approach
developed to highlight substitution patterns between hydrophobic clusters, even if improvements are needed. To this
end, several points are being considered, relating to the improvement of context conservation metrics, the optimization
of Word2Vec parameters or the consideration of larger databases for learning.

Les protéines sont des macromolécules biologiques opérant des fonctions diverses au sein des cellules. Il est important
de connaître leur structure tridimensionnelle qui est le support de ces fonctions. La modélisation comparative ou des
outils de prédictions comme AlphaFold 2 permettent d’accéder à ces informations de structure en absence de données
expérimentales, mais ces outils reposent sur la recherche d’homologies de séquences. Or, celles-ci sont beaucoup moins
conservées que ne le sont les structures. Donc, il reste encore des protéines sans homologues détectables, dont leurs
structures ne peuvent être prédites. Dans ce stage, une nouvelle approche de détection d’homologie lointaine, reposant
sur des descripteurs structuraux, les amas hydrophobes définis dans l’approche d’analyses des amas hydrophobes, a
été étudiée. Dans ce but, Word2Vec a été utilisé pour transformer un corpus de mots (les amas) en vecteur. Ce corpus
est un sous-ensemble de séquences de domaines globulaires extrait de la banque de classification hiérarchique SCOPe,
considérée à plusieurs niveaux de redondance. Dans le cadre de mots proches (synonymes), caractérisés par un contexte
conservé, le produit scalaire des vecteurs générés par Word2Vec donne des valeurs maximales. Donc, deux amas hy-
drophobes représentés par ces vecteurs pourraient alors être substituables. Les caractéristiques de ces amas en termes
d’occurrence et de norme de leurs vecteurs ont été étudiées, mettant entre autres en évidence l’intérêt des banques à
haut niveau de redondance. De plus, des sous-ensembles d’amas pour lesquels une information pertinente peut être
obtenue ont aussi été étudiés. La conservation du contexte des amas hydrophobes varie en fonction des niveaux de re-
dondance et de la hiérarchie SCOPe, mais n’est pas, dans les conditions testées, corrélée à la norme de leurs vecteurs.
Enfin, des premières observations d’une matrice cosine calculée appuient la pertinence de l’approche développée pour
mettre en évidence des schémas de substitution entre amas hydrophobes, même si des améliorations sont nécessaires.
Ainsi, plusieurs points sont envisagés dans ce but, portant sur l’amélioration des métriques de conservation du contexte,
l’optimisation des paramètres de Word2Vec, ou des banques d’apprentissage plus larges.
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